If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2=906
We move all terms to the left:
16t^2-(906)=0
a = 16; b = 0; c = -906;
Δ = b2-4ac
Δ = 02-4·16·(-906)
Δ = 57984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{57984}=\sqrt{64*906}=\sqrt{64}*\sqrt{906}=8\sqrt{906}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{906}}{2*16}=\frac{0-8\sqrt{906}}{32} =-\frac{8\sqrt{906}}{32} =-\frac{\sqrt{906}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{906}}{2*16}=\frac{0+8\sqrt{906}}{32} =\frac{8\sqrt{906}}{32} =\frac{\sqrt{906}}{4} $
| 2x-2(4x+12)=6 | | 7(7r=1)=252 | | 4(v-5)-3=-4(-4v+2)-3v | | 2(y-5)-7=20 | | x+14+2x+24+10=21 | | 7(3x-7)+45=18x+24 | | 2/3(6-9x)=-1/5(15x+10) | | p16+15=17 | | 3(2x-1)^2+27=3(2x-1)(2x-1)+27 | | 36+2v+4v=180 | | ⅜=12/x | | 2w+19=23 | | -4+3w=-16 | | 2/3(6-9x)=-1/5(15x | | 70+8x-1=12x+2 | | 15=51-f | | 6(v+4)=-2(2v-5)+4v | | 4x-38=x+10 | | p/2.5=3 | | 15p+5=20 | | -9m+1=80 | | 4(v-5)-3=-4(-4+2)-3v | | 4(f+7)=-12 | | 4/5x-3/4=2 | | -6=n-15 | | 8-2+13x=x-2 | | 10x-12+3x-1=6x+9 | | 7/12+y=3 | | -4.1=v/4+2.3 | | -38k+5=39-k | | 11x+10-5x=40 | | +11=-2(x+1.5) |